Bias/Variance Decompositions for Likelihood-Based Estimators
نویسندگان
چکیده
منابع مشابه
Bias/Variance Decompositions for Likelihood-Based Estimators
The bias/variance decomposition of mean-squared error is well understood and relatively straightforward. In this note, a similar simple decomposition is derived, valid for any kind of error measure that, when using the appropriate probability model, can be derived from a Kullback-Leibler divergence or log-likelihood.
متن کاملGeneralized Empirical Likelihood Estimators
In an effort to improve the small sample properties of generalized method of moments (GMM) estimators, a number of alternative estimators have been suggested. These include empirical likelihood (EL), continuous updating, and exponential tilting estimators. We show that these estimators share a common structure, being members of a class of generalized empirical likelihood (GEL) estimators. We us...
متن کاملMean likelihood estimators
The use of Mathematica in deriving mean likelihood estimators is discussed. Comparisons are made between the mean likelihood estimator, the maximum likelihood estimator, and the Bayes estimator based on a Jeffrey’s noninformative prior. These estimators are compared using the mean-square error criterion and Pitman measure of closeness. In some cases it is possible, using Mathematica, to derive ...
متن کاملOn the Maximum Likelihood Estimators for some Generalized Pareto-like Frequency Distribution
Abstract. In this paper we consider some four-parametric, so-called Generalized Pareto-like Frequency Distribution, which have been constructed using stochastic Birth-Death Process in order to model phenomena arising in Bioinformatics (Astola and Danielian, 2007). As examples, two ”real data” sets on the number of proteins and number of residues for analyzing such distribution are given. The co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 1998
ISSN: 0899-7667,1530-888X
DOI: 10.1162/089976698300017232